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Abstract

The predictive capability of finite element models is limited by their deterministic nature: typically, not all
model parameters are exactly known, while even small deviations may have significant effects on the
predicted response. Parameter uncertainty should therefore be taken into account, e.g. with fuzzy
arithmetic. The absence of fuzzy solvers led to interval arithmetic as a numerical alternative. The
Transformation Method (TM), presented by M. Hanss, replaces interval arithmetic with a set of
deterministic computations: for each interval, all parameter extrema are combined in every possible way. In
a Design of Experiments terminology, the TM is a so-called Full Factorial design.
The TM is applicable if the output is monotonic in the inputs. Unlike interval arithmetic, it does not

overestimate the response uncertainty, as only parameter combinations are evaluated that actually occur.
In this paper, the TM has been applied to visualise uncertain frequency response functions (FRFs),
obtained with modal superposition. This yields accurate results when validated against Monte Carlo data,
but the computation time is rather high. The Short Transformation Method (STM) is proposed as an
attractive alternative to the original TM. A full set of deterministic computations, combining all interval
extrema, is only performed at the lowest interval. For higher levels, a smaller set is evaluated. This allows
see front matter r 2005 Elsevier Ltd. All rights reserved.
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reconstructing the fuzzy FRF from a much lower number of deterministic computations, with only a small
reduction in the accuracy of FRFs. Both methods are demonstrated on a clamped plate and a car front
cradle with uncertain design parameters.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, product design departments in automotive industry are using finite element (FE)
models intensively to analyse and solve a variety of engineering problems related to the vehicle
noise and vibration performance. These large numerical models are deterministic, i.e. it is
implicitly assumed that all parameters are precisely known and that the manufacturing process
produces identical structures. This is typically not valid, as two classes of parameter deficiency can
be distinguished [1]. Variability refers to the variation inherent to the physical system or the
environment under consideration, while uncertainty is a potential deficiency in any phase or
activity of the modelling process that is due to lack of knowledge. Variability typically exists on
the level of physical properties (geometric, material characteristics) and manufacturing tolerances,
while uncertainty exists on the level of model inaccuracy (e.g. joint models between subsystems)
and physical properties in an early design stage, when design decisions must still be taken, so that
dimensions and material properties are not yet fixed. Increasing the knowledge may reduce
uncertainty, whereas variability is an irreducible scatter on the parameter value. As even small
parameter changes may have substantial effects on response predictions, a reliable method to
assess the effect of uncertainty and variability is very important [2,3]. Variability is typically
modelled with a probability density function (PDF); its effect can be assessed with well-
established stochastic procedures. Uncertainty should not be described in a probabilistic manner:
there is not enough information available, so that assigning a PDF changes the problem definition
in a subjective way. The results may be erroneous, and there is no way to verify this from the
obtained results.
A suitable way to take uncertainty into account is with a possibilistic approach, such as fuzzy

arithmetic, which allows to identify worst-case scenarios without assigning a level of probability to
the set of possible outcomes. Two paths can be distinguished regarding the application of fuzzy
arithmetic to structural dynamics problems. The first path is to completely replace conventional
arithmetic with a generalized fuzzy arithmetic [4,5]. This allows to assemble fuzzy system matrices
and perform a fuzzy modal analysis [6]. Such a procedure is; however, limited to rather academic
problems, as fuzzy solvers are either slow or non-existing; for example, fuzzy matrix inversion is
not (yet) possible. Numerical approximations have therefore been developed; the a-sublevel
technique allows to numerically represent a fuzzy number by a set of intervals, so that interval

arithmetic [7] can be used to estimate an interval representation on the problem’s output side.
Unfortunately, this procedure often leads to overestimation of the output uncertainty. A fuzzy
eigenvalue analysis method based on interval arithmetic, using an optimization procedure to
prevent this overestimation, has been presented in Ref. [8].
The second path is based on Design of Experiments (DOE) methodology and conventional

arithmetic. A DOE is a set of experiments, designed to provide maximal information using
minimal computational effort [9]. The Vertex Method [10] performs a full-factorial DOE on the
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input vertex of the fuzzy problem. Each of the n input parameters is either assigned its minimum
or its maximum value, and all possible combinations of individual parameter minima or maxima
are listed. Each of the 2n parameter combinations is then successively analysed in a conventional
deterministic analysis run, and the fuzzy output is reconstructed from the deterministic results.
The Reduced Transformation Method [11] is an extension of the Vertex Method: the fuzzy inputs
are subdivided into a number of intervals, and a Full Factorial DOE is performed for each of
these intervals. Hanss also presented the General Transformation Method [11] that adds more
points to the DOE. This method has not been considered; in the remainder of this paper, the term
‘‘Transformation Method’’ (TM) denotes the reduced form. When compared to completely fuzzy
approaches, the DOE-based approaches have the advantage that much less algorithm
development is required, as the bulk part of the fuzzy problem is solved with standard
deterministic computations.
In this paper, the TM is applied to predict the frequency response function (FRF) of dynamic

structures with uncertain input parameters. Existing FE routines can thus be used to solve the
bulk part of the structural analysis. The fuzzy FRF is obtained from a set of deterministic FRFs,
where each FRF is obtained with a modal superposition of modal contributions within the
frequency range of interest [12]. For uncertain parameters with a global effect on the structure, the
eigenfrequency values are perhaps monotonic in the inputs, while the amplitude at given frequency
typically does not depend on the inputs in a monotonic way. The Short Transformation Method

(STM) is introduced in this paper as a computationally attractive alternative to the original TM,
for dynamic analysis of structures with uncertain parameters that affect the eigenfrequency values
in a (more or less) monotonic way.
2. Fuzzy sets and numbers

In classical set theory, the elements x of a set A either belong to the set entirely, i.e. the
membership level is mA ¼ 1, or do not belong to the set at all, so that mA ¼ 0. This principle is
generalized in fuzzy set theory: a membership level mAðxÞ 2 ½0; 1� is assigned to all elements x, i.e.
the elements belong to the set to a certain degree. The core of the set is defined as the subset for
which mA ¼ 1. The support is the subset for which mA40 (also known as the input vertex). The
a-cut is a generalized support: the subset for which mAXa. A fuzzy number is a fuzzy set with some
specific properties: the set is convex and normal, the membership function is piecewise continuous,
and the core consists of a single element [13]. A fuzzy number’s membership function can be of
arbitrary shape, either derived from (limited) experimental data or expert knowledge of the model
parameters. Fig. 1 shows two well-established types: a membership function with a Gaussian and
a triangular shape. The triangular shape is widely used for reasons of simplicity: when the exact
parameter distribution is not known, it does not make sense to assign a more complex-shaped
function.
As mentioned in the introduction, the a-sublevel technique is often used to numerically

represent a fuzzy number [4]. The membership range of all fuzzy numbers is subdivided into
a-sublevels at membership levels

mj ¼ j � Dm; for j ¼ 0; 1; . . . ;m; where Dm ¼ 1=m. (1)
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Fig. 1. Fuzzy numbers with Gaussian (left) and triangular (right) membership function mAðxÞ. The core is denoted as c,

the support is the interval ½a; b�.
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Fig. 2. The a-sublevel technique to numerically represent a fuzzy number with membership function mAðxÞ as a set of

intervals ½aðjÞ; bðjÞ
� at membership levels mj .
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The intersection of each membership function at the level mj ¼ a yields an interval ½aðjÞ; bðjÞ� for
which the membership value mjXa. The set of m þ 1 intervals (note that the core level mA ¼ 1 is
included) can then be used to numerically represent the original fuzzy number. Fig. 2
demonstrates this technique for a triangular fuzzy number, subdivided into 4 intermediate
intervals, next to core (at mA ¼ 1) and support (at mA ¼ 0), so that m ¼ 5.
3. The Transformation Method

This section gives an outline of the (reduced) TM, as presented in the paper of Hanss [11].
Consider an arithmetic function f ð�Þ that depends on n uncertain parameters x1; x2; . . . ;xn, so that
the function output q ¼ f ðx1; x2; . . . ;xnÞ is a fuzzy number as well. The n parameters are modelled
as fuzzy numbers ~pi; i ¼ 1; 2; . . . ; n with a membership function mAðxÞ of arbitrary shape. Using
the a-sublevel method (see Section 2), each of the parameters is decomposed into a set Pi of m þ 1
intervals X

ðjÞ
i ; j ¼ 0; 1; . . . ;m of the form

Pi ¼ fX
ð0Þ
i ;X ð1Þ

i ; . . . ;X ðmÞ

i g (2)
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with

X
ðjÞ
i ¼ ½a

ðjÞ
i ; bðjÞ

i �; a
ðjÞ
i pb

ðjÞ
i ; i ¼ 1; 2; . . . ; n; j ¼ 0; 1; . . . ;m. (3)

The intervals are then transformed into arrays X̂
ðjÞ

i of the following form:

X̂
ðjÞ

i ¼ ðaðjÞi ; bðjÞi ; aðjÞi ; bðjÞi ; . . . ; aðjÞi ;bðjÞi Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2i�1 pairs

(4)

with

aðjÞi ¼ ða
ðjÞ
i ; . . . ; aðjÞi Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2n�i elements

; bðjÞi ¼ ðb
ðjÞ
i ; . . . ; bðjÞi Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2n�i elements

, (5)

where a
ðjÞ
i and b

ðjÞ
i denote the lower and upper bound of the interval at the membership level mj for

the ith uncertain parameter. For each interval level, these arrays combine the interval extrema a
ðjÞ
i

and b
ðjÞ
i in every possible way, in a regularity similar to a Full Factorial DOE. For an example

problem with 3 uncertain parameters, the arrays X̂
ðjÞ

i in Eq. (4) are given by X̂
ðjÞ

1 , X̂
ðjÞ

2 and X̂
ðjÞ

3 in

Eq. (6); the 23 columns of X̂
ðjÞ

i have the regularity of a Full Factorial DOE.

X̂
ðjÞ

1

X̂
ðjÞ

2

X̂
ðjÞ

3

8>>><
>>>:

9>>>=
>>>; ¼

ða
ðjÞ
1 ; a

ðjÞ
1 ; a

ðjÞ
1 ; a

ðjÞ
1 ; b

ðjÞ
1 ; b

ðjÞ
1 ; b

ðjÞ
1 ; b

ðjÞ
1 Þ

ða
ðjÞ
2 ; a

ðjÞ
2 ; b

ðjÞ
2 ; b

ðjÞ
2 ; a

ðjÞ
2 ; a

ðjÞ
2 ; b

ðjÞ
2 ; b

ðjÞ
2 Þ

ða
ðjÞ
3 ; b

ðjÞ
3 ; a

ðjÞ
3 ; b

ðjÞ
3 ; a

ðjÞ
3 ; b

ðjÞ
3 ; a

ðjÞ
3 ; b

ðjÞ
3 Þ

8>><
>>:

9>>=
>>;. (6)

For each level of membership, this produces 2n combinations. For the highest level of
membership, all combinations are equal to the core combination (c1; c2; . . . ; cn), so that only a
single combination needs to be evaluated. For a problem with n parameters and m þ 1 intervals,
this yields a set of NTM combinations, with

NTM ¼ 1þ m � 2n. (7)

All these combinations are located on the 2ðn�1Þ diagonals (i.e. 2n half-diagonals) of the
hypercuboid in the parameter space that is spanned by the input vertex [11]. Fig. 3 shows an
example adapted from Ref. [11], with three uncertain parameters (with symmetric triangular
membership functions). The parameter combinations of the 5 interval levels are located on the

2ð3�1Þ ¼ 4 diagonals (i.e. 23 ¼ 8 half-diagonals) of the hypercuboid, which intersect at the core
level.
The arrays X̂

ðjÞ

i contain 1þ m � 2n parameter combinations. These combinations are evaluated
via conventional arithmetic for crisp numbers, i.e. with deterministic, non-fuzzy computations. As

proposed by Hanss [11], the deterministic outputs are stored in arrays Ẑ
ðjÞ
that contain

ðfor j ¼ 0; 1; . . . ;m � 1Þ;
k
ẑðjÞ; the k ¼ 1::2n outputs at the jth level

ðfor j ¼ mÞ; ẑðmÞ; a single output at the core level. ð8Þ
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Fig. 3. Graphical representation of the Transformation Method in the parameter space (x1; x2; x3), for m ¼ 5. Each

black dot is an evaluated parameter combination.
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Subsequently, the interval representation ZðjÞ ¼ ½aðjÞ; bðjÞ
�, j ¼ 0; 1; :::;m of the fuzzy output q can

be obtained via the repetitive procedure [11]

ðfor j ¼ 0; 1; . . . ;m � 1Þ

aðjÞ ¼ min
k

ðaðjþ1Þ; kẑðjÞÞ;

bðjÞ
¼ max

k
ðbðjþ1Þ; kẑðjÞÞ;

8><
>: (9)

ðfor j ¼ mÞ aðmÞ ¼ ẑðmÞ
¼ bðmÞ.

This means that the fuzzy output at the core level is equal to the single deterministic output at the

core level. At a lower a-sublevel, the lower boundary aðjÞ of the fuzzy output’s interval

representation is the minimal value attained by kẑðjÞ at a membership level mjXa. Equivalently, the

upper boundary bðjÞ is the maximum value of kẑðjÞ in the parameter range for which mjXa.
4. The Transformation Method in the frequency domain

In this paper, the TM is applied to visualize the effect of uncertain input parameters on the FRF
characteristics of a structural FE model. Application of the TM to the frequency domain only
requires that a frequency dimension is added to the output side of the procedure in Section 3.
With a frequency increment Df , the frequency range is given by ½ f min; f min þ Df ; . . . ; f max�; this
range of Nf samples is abbreviated as ½ f min; f max� from here on. For the sake of completeness, the
entire procedure in the frequency domain is summarized below.
The n uncertain input parameters are modelled as fuzzy numbers that are subdivided into m þ 1

intervals (including the core level). The NTM ¼ 1þ m � 2n combinations of interval extrema are

stored in the arrays X̂
ðjÞ

i , see Eq. (6). The combinations X̂
ðjÞ

i are evaluated with deterministic

computations, yielding FRF vectors kẑð f ÞðjÞ instead of scalar outputs kẑðjÞ as in Eq. (8). In analogy
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with Ref. [11], the deterministic FRF vectors are stored in arrays Ẑð f ÞðjÞ that contain

ðfor j ¼ 0; 1; . . . ;m � 1Þ;
k
ẑð f ÞðjÞ; the k ¼ 1::2n FRFs at the jth level

ðfor j ¼ mÞ; ẑð f ÞðmÞ; a single FRF at the core level. ð10Þ

The repetitive algorithm in Eq. (9) must be applied at each sampled frequency, yielding the
interval representation of the fuzzy FRF amplitude at that frequency, given by

AðjÞð f Þ ¼ ½AðjÞð f Þ;A
ðjÞ
ð f Þ� for j ¼ 0; 1; . . . ;m and f 2 ½ f min; f max�, (11)

where AðjÞð f Þ and A
ðjÞ
ð f Þ denote the lower and upper boundary of the fuzzy amplitude at the

frequency f. Effectively, the amplitude at each sampled frequency is computed as an independent
fuzzy number; for all frequencies combined, these amplitudes AðjÞð f Þ form fuzzy envelopes at the
m þ 1 levels of membership. At the highest level, the upper and lower envelopes are a single
vector, namely the FRF vector at mj ¼ 1. At lower interval levels mj ¼ a, the lower envelope is the
vector of minimal amplitude values attained by the deterministic FRF vectors for membership
levels mjXa; equivalently, the upper envelope is the vector of maximal amplitude values attained
by the deterministic FRF vectors for mjXa.

4.1. Note on the applicability

The TM has been presented by Hanss as a practical implementation of fuzzy arithmetic,
yielding ‘‘the proper—and in case of non-monotonic problems at least nearly proper—results’’.
This is quite logical: when a function f ðX Þ depends monotonically on its n input parameters
x1;x2; . . . ; xn, the extreme values of the function value f ðX Þ are always found on the combinations
of the input vertex extrema; for the example in Fig. 3, this corresponds to the corner points of the
hypercuboid. For a monotonic function f ðX Þ, the TM can be used with m ¼ 1 in order to assess
the full range of the output uncertainty.
As a fuzzy FRF is a sequence of fuzzy amplitudes, the TM requires that the amplitude

magnitudes at each sampled frequency depend on the input parameters in a monotonic way. This
is often not the case: as mentioned in the introduction, it are often the eigenfrequency values of a
structure that depend on global input parameters (mass density, Young’s modulus, shell
thickness, etc.) in a monotonic way. For the FRF of such a structure, consider a frequency sample
f that lies just above a resonance frequency f R. When a parameter change Dx is applied, the
resonance frequency f R might shift toward the sampled frequency f, so that the amplitude Að f Þ
increases. When a larger parameter change is applied, the resonance frequency f R may pass
through the sampled frequency f, resulting in a decrease of the amplitude Að f Þ as a result of the
parameter change. The amplitude at a given frequency is then clearly not monotonic in x. As has
previously been demonstrated in [14], the non-monotonicity of the FRF amplitudes and the TM’s
sampling procedure cause an undesired effect, namely a saw-like shape of the TM envelope: some
resonance peaks are simply ‘‘missed’’ by the deterministic computations. With a sufficiently high
number of membership levels (typically between 5 and 10, depending on the dynamic structure
and the range of the input uncertainty), the size of these saw-teeth is limited and the TM’s FRF
envelopes are sufficiently accurate. In other words, one needs enough ‘‘intermediate deterministic
FRFs’’ to reconstruct the entire fuzzy FRF. Note that any engineer can recognize the saw-teeth
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and choose to ignore them. This effect therefore does not limit practical applications, as will be
demonstrated in Sections 8 and 9.
The number of interval levels m may result in a high computation time for the TM, as a number

of NTM ¼ 1þ m � 2n deterministic computations is required. It is very important to reduce the
number of computations required for an uncertainty assessment. For this purpose, the Short
Transformation Method (STM) is proposed in the next section.
5. The Short Transformation Method

5.1. Outline of the Short Transformation Method

The STM is presented as a cost-effective alternative to the original TM [11] for frequency-
domain applications, allowing to reconstruct the fuzzy FRF from a much lower number of
deterministic computations with only a small reduction in the accuracy. The STM is based on the
assumption that a single diagonal in the parameter space (i.e. 2 half-diagonals) is sufficient to
assess FRF uncertainty. The STM’s DOE has been visualized in Fig. 4; the procedure is
summarized as follows:
(1)
Fig.

an e
Compute an initial set of FRF vectors, at the input vertex combinations (at m ¼ 0) and at the
core combination xc.
(2)
 Identify the principal diagonal, i.e. the diagonal in the parameter space that has the largest
contribution to the shape of the FRF envelope, from the initial set of FRF vectors.
(3)
 Evaluate only the 2 parameter combinations on the principal diagonal for the remaining levels
of membership (with m typically between 5 and 10, as with the TM).
When comparing Figs. 3 and 4, it is clear that the proposed STM leads to a large reduction of the
number of experiments with respect to the original TM. The STM requires a number of
a1
(0)

b1
(0)

a3
(0)

b3
(0)

a2
(0)

b2
(0)

x1

x3

x2

4. Graphical representation of the STM in the parameter space ðx1; x2; x3Þ; for m ¼ 5. Each black dot represents

valuated parameter combination.
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computations NSTM, given by

NSTM ¼ 1þ 2n þ 2 � ðm � 1Þ. (12)

The reduction number is then equal to 2n�1 � ðm � 1Þ, i.e. the difference between NTM in Eq. (7)
and NSTM in Eq. (12); the reduction percentage increases exponentially with the number of
inputs. In analogy with Ref. [11] and Section 4, the FRF vectors that result from the NSTM

deterministic computations are stored in arrays Ẑð f ÞðjÞ that contain

ðfor j ¼ 0Þ
k
ẑð f Þð0Þ; the k ¼ 1::2n FRFs at the 0th level

ðfor j ¼ 1; 2; . . . ;m � 1Þ
k
ẑð f ÞðjÞ; the k ¼ 1::2 FRFs at the jth level

ðfor j ¼ mÞ ẑð f ÞðmÞ; a single FRF at the core level:

(13)

Again, the repetitive procedure in Eq. (9) is applied at each sampled frequency f, in order to find
the interval representation of the fuzzy FRF amplitudes AðjÞð f Þ as given in Eq. (11).
Note that the regularity of the TM’s DOE allows easy identification of the parameter pairs that

span the diagonals in the parameter space. Each parameter combination at index k ¼ 1::2n on the
input vertex has an opposite combination at index 2n þ 1� k; these indices correspond to the

columns of X̂
ðjÞ

i , see for example the columns of Eq. (6). For each of the FRF vectors
kẑð f Þð0Þ that

are computed for the k ¼ 1::2n parameter combinations on the input vertex in Eq. (13), the FRF
vector on the opposite side of the input vertex is therefore given by 2nþ1�kẑð f Þð0Þ.

5.2. Assumptions for the STM

The STM assumes that for the structure under consideration, a parameter change results in
(more or less) monotonic changes of the eigenfrequency values. As an example, Fig. 5 shows the
frequency response of a single degree of freedom (dof) system. At the single eigenfrequency, the
FRF attains its single resonance peak.
Suppose that the structure has a single uncertain input x 2 ½xmin; xmax�, and that an

eigenfrequency f c is obtained at the core xc. When the frequency f depends on the input x in a
monotonic way, an input increase dx results in an increase df of the eigenfrequency magnitude.
FR
F 

A
m

pl
itu

de

f (Hz)

fcfl fr

Fig. 5. Example: FRF with a single resonance peak, subject to monotonic shifts.
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The highest eigenfrequency magnitude f r is then obtained at xmax, yielding the FRF that lies most
to the right-hand side of the frequency range. Vice versa, the lowest eigenfrequency magnitude f ‘,
yielding the FRF most to the left, is found at xmin.
In general, consider a structure with an input vector X, for which an FRF is computed in a

range with more than one eigenfrequency. When each eigenfrequency depends on the input vector
in a monotonic way, one can expect that there exists a pair of parameter combinations on the
input vertex with the largest contribution to the global FRF envelope: a parameter combination
X left will have the largest contribution to the left-hand side of the global FRF envelope, and the
opposite parameter combination X right will have the largest contribution to the right-hand side of
the global FRF envelope. This pair of parameter combinations is located on the same diagonal in
the parameter space, denoted as principal diagonal from here on. This can be illustrated on the

basis of Fig. 4. Assume that X left ¼ ða
ð0Þ
1 ; bð0Þ

2 ; bð0Þ3 Þ has the largest influence on the left-hand side of

the FRF envelope. The opposite combination X right ¼ ðb
ð0Þ
1 ; að0Þ

2 ; að0Þ
3 Þ then lies on the same

diagonal in the parameter space. When parameter changes induce monotonic eigenfrequency
shifts, X right will produce the FRF vector with the largest contribution to the right-hand side of
the global FRF envelope. The next section proposes a method to identify the principal diagonal.

5.3. Heuristic procedure to select the principal diagonal

The core of the STM is a heuristic procedure to select the principal diagonal from the initial set
of FRF vectors. In this section, the successive steps of the heuristic procedure are given, illustrated
on the basis of a simplified set of FRF vectors.

5.3.1. Find global envelope of the initial FRF data

When the FRF vectors have been computed for the initial 2n þ 1 parameter combinations, the
global envelope A0

gð f Þ of these FRF vectors is given by

A0
gð f Þ ¼ ½A0ð f Þ;A

0
ð f Þ� for f 2 ½f min; f max�, (14)
FR
F 

A
m

pl
itu

de

f (Hz)

Fig. 6. Illustration example for the Short Transformation Method: a set of five FRF vectors.
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where A0ð f Þ and A
0
ð f Þ denote the lower and upper boundary, respectively, of the FRF amplitude

at the frequency f. Fig. 6 shows an example set of 5 FRF vectors, that have the global envelope
A0

gð f Þ shown in Fig. 7.

5.3.2. Find characteristic segments on the left- and right-hand side

The 2n parameter combinations on the input vertex can be ordered in 2n�1 pairs with opposite
properties; the 2n�1 diagonals (i.e. 2n half-diagonals) in the parameter space are spanned by these
pairs. This section proposes an approach to identify the pair ½X left;X right� that spans the principal
diagonal in the parameter space from the global FRF envelope A0

gð f Þ in Eq. (14). Recall Figs. 6
and 7, that show the example set of FRF vectors and the global envelope A0

gð f Þ of the set,
respectively. Fig. 8 shows the FRF vectors with the largest contribution to the left- and right-hand
side of the global FRF envelope, respectively. These FRF vectors, that are denoted as left FRF

and right FRF vector from here on, are attained at parameter values X left and X right, respectively.
By comparing Figs. 7 and 8, it can be seen that
�
 the left FRF vector has a large shape conformity with the ascending line segments of the upper

envelope A
0
ð f Þ and with the descending line segments of the lower envelope A0ð f Þ
�
 the right FRF has a large shape conformity with the descending line segments of the upper
envelope A

0
ð f Þ and with the ascending line segments of the lower envelope A0ð f Þ

provided that only line segments with a sample length above a certain threshold are considered. Based
on this notion, an algorithm has been designed to find the characteristic segments Li 2 L and
Rj 2 R that are expected to have a large shape conformity with the left and right FRF,
respectively; Fig. 9 shows these segments for the example set. The left and right FRF vectors,
attained at parameter combinations X left and X right that span the principal diagonal, are found as
the best matches with these characteristic segments.
First, the numerical derivatives of the upper global envelope A

0
ð f Þ and the lower global

envelope A0ð f Þ are computed at each frequency sample f, using the forward finite difference
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Fig. 8. The left FRF vector (dashed line) and the right FRF vector (solid line) of the FRF vector set in Fig. 6.
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(FFD) approximation [15]

qA
0

qf
ð f Þ 


A
0
ðf þ Df Þ � A

0
ð f Þ

Df
for f 2 ½f min; f min þ Df ; . . . ; f max � Df �,

qA0

qf
ð f Þ 


A0ðf þ Df Þ � A0ð f Þ

Df
. ð15Þ

In addition, a set of counters is used to monitor the ascending/descending length of the line
segments of the global FRF envelope A0

gð f Þ:
�
 IU ;asð f Þ denotes the frequency segment length for which the upper FRF envelope A
0
ð f Þ is

ascending at a frequency f;
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�
 IU ;deð f Þ denotes the frequency segment length for which the upper FRF envelope A
0
ð f Þ is

descending at a frequency f;

�
 IL;asð f Þ denotes the frequency segment length for which the lower FRF envelope A0ð f Þ is

ascending at a frequency f;

�
 IL;deð f Þ denotes the frequency segment length for which the lower FRF envelope A0ð f Þ is

descending at a frequency f.
As an example, the counter IU ;asð f Þ is initialized as IU ;asðf minÞ ¼ 0; for frequency samples
f4f min, the counter is updated as follows:

IU ;asð f Þ ¼

IU ;asðf � Df Þ þ 1 if
qA

0

qf
ð f Þ40;

0 if
qA

0

qf
ð f Þp0:

8>>>><
>>>>:

(16)

The gradient values and the counters are then used to filter the characteristic line segments from
the global envelope
�
 A threshold T is introduced as the minimal length of the ascending and descending characteristic
line segments. A line segment with a length below the threshold is not considered; if the length is
above the threshold, the entire line segment is considered. The threshold is a user-defined
parameter that must be tuned to filter out the short line segments. This is necessary in order to
neglect the short segments around the resonance peaks (see e.g. Fig. 7), that should not be used
to identify the left and right FRF.
�
 As FRF characteristics are not always as clean as in Fig. 9, frequencies may exist where both
the upper and lower line segment belong to an envelope side. For example, if the upper
envelope is ascending and the lower envelope is descending simultaneously at a frequency f,
both line segments could belong to the set of characteristic segments on the left-hand side. This
is undesirable, as it roughens the shape of the characteristic segments, which deteriorates the
identification on the basis of Eq. (17) later on. The line segment with the largest length at the
frequency f is kept in such case; the shortest segment is ignored.
For a given threshold, one thus obtains the characteristic segment sets L ¼ ½L1;L2; . . . ;LN � on the
left-hand side and R ¼ ½R1;R2; . . . ;RM � on the right-hand side of the global envelope, as in the
example in Fig. 9.
5.3.3. Locate the principal diagonal
To locate the principal diagonal, the parameter pair on the input vertex must be selected that

yields the two FRF vectors with the highest shape conformity with the characteristic segment
sets on the left- and right-hand side, respectively. As a shape conformity factor, the
Variance Accounted For (VAF) is used [16], that is defined between a reference vector y and
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its estimate ŷ as

Vðy; ŷÞ ¼ 1�
varðy � ŷÞ

varðyÞ


 �
100%, (17)

where varðyÞ is the variance of y, given by Ef½y � Efyg�2g. The VAF can attain values between�1

(if there is no shape conformity at all) and 100% (if y and ŷ are identical vectors).
As each of the k ¼ 1::2n parameter combinations on the input vertex has an opposite

combination at an index 2n þ 1� k, the shape conformity of each FRF pair with the left
and right FRF characteristics can be quantified by computing the so-called VAF sums
VsumðkÞ

VsumðkÞ ¼
VðL;kẑð f Þð0ÞÞ þVðR;2

nþ1�kẑð f Þð0ÞÞ

2
for k ¼ 1::2n. (18)

For each of these computations, the vectors kẑð f Þð0Þ are reduced to the frequency samples where
L and R have non-zero values (i.e. where the characteristic line segments are defined), as this
improves the selection based on the VAF sums VsumðkÞ in Eq. (18). The principal diagonal is
identified as the parameter pair ½X left;X right� at the position ðk; 2n þ 1� kÞ for which VsumðkÞ
attains a maximal value. Two checks are used to assess the correctness of the obtained
solution:
�
 the maximal value of the VsumðkÞ can be compared with the second-largest value of the
VsumðkÞ; if there is indeed a single diagonal with a large contribution to the left- and right-hand
side, one can expect that this difference is substantial;
�
 when the maximal value of VsumðkÞ is obtained at the parameter combination ðk; 2n þ 1� kÞ,
one can expect to find a very low value of Vsumð2

n þ 1� kÞ at the opposite parameter
combination ð2n þ 1� k; kÞ. This can be understood from Fig. 8: the FRF with the largest
shape conformity on the left-hand side has almost no shape conformity with the right-hand side
of the global envelope, and vice versa.

When the principal diagonal has been identified with the described heuristic procedure, the STM
can be executed as described in Section 5.1.
6. Results validation criteria

The TM and STM envelopes are validated against FRF data from a sufficiently large
number Nmc of Monte Carlo (MC) simulations, with a uniform distribution in the
problem’s input vertex, in order to randomly sample all possible input parameter combinations.
Recall that the fuzzy FRF envelopes of the TM and STM have the form AðjÞð f Þ in Eq. (11);
from here on, the lower and upper global envelopes of TM and STM are given by

½A
ð0Þ
TMð f Þ;A

ð0Þ

TMð f Þ� and ½A
ð0Þ
STMð f Þ;A

ð0Þ

STMð f Þ�, respectively. In analogy with Eqs. (10) and (11), the

Monte Carlo FRF vectors are stored in arrays kẑMCð f Þ, for k ¼ 1::Nmc, that have a global FRF

envelope AMCð f Þ ¼ ½AMCð f Þ;AMCð f Þ�.
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6.1. First validation criterion: Overall inclusion percentage

The overall inclusion percentage (OIP) is the first validation criterion, that denotes the
percentage of Monte Carlo FRF samples that lies between the global envelopes of the TM (or,
equivalently, of the STM). This requires that an indicator flagIðf ; kÞ is introduced for each of the
FRF vectors kẑMCð f Þ, for k ¼ 1::Nmc

Iðf ; kÞ ¼
1 if A

ð0Þ
TMð f Þ p kẑð f ÞMC p A

ð0Þ

TMð f Þ;

0 otherwise:

(
(19)

The inclusion percentage IPð f Þ at sampled frequencies f 2 ½f min; f max� is then given by

IPð f Þ ¼
1

Nmc

XNmc

k¼1

Iðf ; kÞ

 !
100%. (20)

The overall inclusion percentage (OIP, see Fig. 10) is then obtained as the average of IPð f Þ in
the frequency range ½f min; f max�:

OIP ¼
1

Nf

Xf max
f¼f min

IPð f Þ. (21)

6.2. Second validation criterion: Variance accounted for

Recall the VAF in Eq. (17), the shape conformity factor Vðy; ŷÞ between a reference vector y
and its estimate ŷ [16]:

Vðy; ŷÞ ¼ 1�
varðy � ŷÞ

varðyÞ


 �
100%.

The VAF criterion (see Fig. 11) is used to compare the upper and lower Monte Carlo envelopes,
AMCð f Þ and AMCð f Þ, with the global envelopes of TM and STM, respectively. The Monte Carlo
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envelopes are taken as reference vectors y, the TM and STM envelopes are considered as estimates ŷ in
Eq. (17).
�
 For the TM, this yields upper and lower VAF values Vup
TMðAMCð f Þ;ATMð f ÞÞ and

Vlo
TMðAMCð f Þ;ATMð f ÞÞ;
�
 for the STM, this yields upper and lower VAF values Vup
STMðAMCð f Þ;ASTMð f ÞÞ and

Vlo
STMðAMCð f Þ;ASTMð f ÞÞ.

7. Implementation

In Sections 8 and 9, two FE models are introduced as example structures for uncertainty
assessment, for which uncertain inputs and an FRF vector of interest are defined. The effect of the
input uncertainty on the FRF characteristics is then assessed with both TM and STM, and
validated against Monte Carlo simulations.
The algorithms have been implemented in MATLAB [17]. Process management is performed

with OPTIMUS [18], that launches the deterministic computations for the required parameter
combinations and collects the results. Each deterministic computation is performed with an MSC/
NASTRAN [19] Modal Frequency Response case (SOL 111). First, the modal contributions are
computed in the frequency range of interest; modal superposition is then used to obtain the
deterministic FRF amplitude vectors.
8. Analysis of a clamped plate

8.1. Problem definition

The first test structure is a clamped plate of 0:5� 0:35m2 in the x; y-plane, consisting of 441
nodes and 400 elements (i.e. a 20� 20 element mesh). The plate has been clamped along the
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Fig. 12. Example 1: a thin plate in the x; y-plane, clamped along the left-hand side. The w=F FRF characteristics are

computed between dof ‘‘IN’’ and ‘‘OUT’’ in the figure, both in the þz-direction.

Table 1

Uncertain input parameters of the clamped plate in Fig. 12

Parameter X i (unit) Input range ½Xmin;Xmax� Core value X c

X 1 Young’s modulus ð109 N=m2Þ [200, 220] 210

X 2 Mass density ðkg=m3Þ [7600, 8000] 7800

X 3 Shell thickness ð10�3 mÞ [2, 3] 2.5
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y-axis, as can be seen in Fig. 12 [20]. The FRF is defined between the input dof (force F applied in
direction þz) at the lower right corner and the output dof (displacement w in direction þz) at the
upper right corner. For this plate, the shell thickness, mass density and Young’s modulus are
introduced as uncertain parameters that are modelled as symmetric triangular membership functions
with the range and the core as defined in Table 1. Modal damping has been set to 1% for all modes.
For each deterministic FRF computation, the modes have been computed in the frequency range
½0; 300�Hz. Modal superposition then yields the FRF vector in the range ½0; 200�Hz with an
increment of 1Hz. This example has previously been analysed with the TM in [14].

8.2. Results with the Transformation Method

For the clamped plate with the n ¼ 3 uncertain parameters in Table 1, the number of interval
levels is set to m ¼ 10, so that the TM requires a number ofNTM ¼ 1þ m � 2n ¼ 81 deterministic
experiments. Using Eq. (13), the fuzzy FRF in Fig. 13 has been obtained from the set of
deterministic FRF vectors.

8.3. Results with the Short Transformation Method

The FRF of the clamped plate has then been estimated with the STM. As described in Section
5.3, an initial DOE is performed on the input vertex and at the core combination, to obtain the
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Fig. 13. Fuzzy FRF of the clamped plate in Fig. 12, obtained with the transformation method in the range 0–200Hz. A

darker colour represents a higher level of membership of the fuzzy FRF output.
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initial FRF A0
gð f Þ in Eq. (14). The thresholdT for the length of the left and right segmentsL and

R has been set to 8. With the VsumðkÞ in Eq. (18) it has then been found that the principal
diagonal is spanned by the parameter pair ½X left;X right� at the indices ðk; 2

n þ 1� kÞ ¼ ð4; 5Þ on the
TM’s DOE; this corresponds to columns 4 and 5 of Eq. (6); X left is thus found at ða

ð0Þ
1 ; bð0Þ

2 ; bð0Þ3 Þ

and X right at ðb
ð0Þ
1 ; að0Þ

2 ; að0Þ3 Þ. The following selection criteria for the principal diagonal have been
found:
�
 The maximal value of VsumðkÞ is attained at k ¼ 4: Vsumð4Þ ¼ 75:6%.

�
 The second highest value of VsumðkÞ is attained at k ¼ 3: Vsumð3Þ ¼ 64:4%.

�
 For the selected principal diagonal, the opposite combination ð5; 4Þ yields a very low value of
Vsumð5Þ ¼ �233:6.

For higher levels of membership, only the two parameter combinations on the principal diagonal
have been evaluated, i.e. ða

ðjÞ
1 ; b

ðjÞ
2 ; b

ðjÞ
3 Þ and ðb

ðjÞ
1 ; a

ðjÞ
2 ; a

ðjÞ
3 Þ for j ¼ 2::m, yielding 2 � ðm � 1Þ ¼ 18

additional deterministic experiments. The total number of deterministic computations performed
by the STM is therefore equal to NSTM ¼ 1þ 2n þ 2 � ðm � 1Þ ¼ 27. For the obtained set of
deterministic FRF vectors, Eq. (13) has been used to reconstruct the fuzzy FRF, which is shown
in Fig. 14.
In Section 8.5, the results with the STM are given for other diagonal selections than the

principal diagonal. For this purpose, note that the third highest value of VsumðkÞ is attained at
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Fig. 14. Fuzzy FRF of the clamped plate in Fig. 12, obtained with the Short Transformation Method in the range

0–200Hz. A darker colour represents a higher level of membership of the fuzzy FRF output.
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k ¼ 1 (Vsumð1Þ ¼ 63:6%), and the fourth highest value at k ¼ 2 (Vsumð2Þ ¼ 46:9%). After the
initial DOE, the 4 diagonals can thus be ranked as follows: the principal diagonal at combination
(4; 5) on the input vertex yields the highestVsumðkÞ, followed by diagonals at combinations (3; 6),
(1; 8) and finally (2; 7).

8.4. Validation and assessment

The FRF data samples ofNMC ¼ 500 Monte Carlo simulations, uniformly distributed over the
input vertex (i.e. the Input range in Table 1), are used to validate the fuzzy FRF of the TM and
the STM, respectively, with the criteria defined in Section 6. The results are given in Table 2.
Clearly, the STM is more effective than the TM, as it reduces the number of experiments with a
factor 3, with only a very slight loss of accuracy.
Fig. 15 partly shows the upper envelopes of Monte Carlo (thick, grey), TM (medium thickness)

and STM (thin) in a single figure. Note the following:
�
 As the STM’s DOE is a subset of the TM’s DOE, the global envelope of the STM never exceeds
the envelope of the TM.
�
 The TM envelope has a saw-like shape, as a result of the limited sampling plan. The saw-teeth
of the STM envelope are somewhat deeper, but the actual envelope shape can still be
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Table 2

Clamped plate: validation of TM and STM envelopes against Monte Carlo data

Transformation Method Short Transformation Method

NTM ¼ 81 experiments NSTM ¼ 27 experiments

OIPTM ¼ 98:3% OIPSTM ¼ 96:2%

V
up
TMðAMCð f Þ;ATMð f ÞÞ ¼ 97:9% V

up
STMðAMCð f Þ;ASTMð f ÞÞ ¼ 97:2%

Vlo
TMðAMCð f Þ;ATMð f ÞÞ ¼ 99:5% Vlo

STMðAMCð f Þ;ASTMð f ÞÞ ¼ 99:4%
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Fig. 15. Envelope comparison: The upper FRF envelope obtained with Monte Carlo (thick, grey), TM (thick, black,

from Fig. 13) and STM (thin, black, from Fig. 14) in the range 50–200Hz.
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recognized. The Monte Carlo has a smooth shape, as many intermeditate resonance peaks have
been sampled.
�
 The Monte Carlo method is not an ideal reference, as even a high number of samples cannot
prevent that vertex combinations are missed. For example, the set of 500 Monte Carlo FRF
vectors does not contain the most left FRF around 150Hz, that has been located with the TM
and STM.

8.5. Justification of the proposed diagonal selection

For simple structures, one can argue to select the principal diagonal based on physical
considerations. The clamped plate only has bending modes; the lowest eigenfrequencies are
attained at the minimum of the Young’s modulus, the maximum of the mass density and the
minimum of the shell thickness [12]; the highest eigenfrequency values at the opposite extrema.
When one selects the left and right FRF based on this reasoning, one selects X left ¼ ða

ð0Þ
1 ; bð0Þ2 ; að0Þ

3 Þ

and X right ¼ ðb
ð0Þ
1 ; að0Þ

2 ; bð0Þ
3 Þ, the vertex pair with the second-highest VsumðkÞ of 64:4%. Note that

such a simple reasoning cannot be followed for a structure of arbitrary complexity. The advantage
of the proposed selection method is that it is only based on the FRF data at the initial DOE.
This section aims to justify the proposed selection method of the principal diagonal, by

repeating the analysis in Sections 8.3 and 8.4 for other diagonals than the principal diagonal. The
uncertain FRF predictions with the STM are validated in this section with the criteria introduced
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Table 3

Comparison of STM predictions of the clamped plate FRF, for all 4 diagonals that can be selected

Selected diagonal, at combination ð. . . ; . . .Þ VsumðkÞ (ranking) Validation criteria (ranking)

OIP VAF Vup
VAF Vlo

(4, 5), i.e. principal diagonal 75.6% (1) 96.2% (1) 97.2% (1) 99.5% (1)

(3, 6) 64.4% (2) 96.0% (3) 97.1% (2) 99.4% (3)

(1, 8) 63.6% (3) 95.9% (4) 95.5% (3) 99.4% (3)

(2, 7) 46.9% (4) 96.1% (2) 94.7% (4) 99.5% (1)

The results and ranking based on theVsumðkÞ criterion are compared with the results and ranking based on the OIP and

VAF, i.e. the validation criteria of the fuzzy FRF against Monte Carlo data.
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in Section 6. Table 3 compares the ranking according to these validation criteria with the ranking
according to the VsumðkÞ (see Section 8.3). It can be seen that the principal diagonal, predicted
from theVsumðkÞ ranking, yields the best results on all validation criteria. For the other diagonals,
the rankings based on VsumðkÞ and the validation criteria are clearly correlated.
9. Analysis of a car front cradle

9.1. Problem definition

The second test structure is a car front cradle, a stiff framework that is attached to the car body
to support the engine in the car and to provide attachment points for the suspension arms. Fig. 16
[20] shows the FE model, that consists of 1934 nodes and 2221 elements.
The structure has been clamped rigidly at the 4 connection points to the car body; i.e. a rigid

coupling is assumed. The FRF is defined between the input dof (force F applied in direction þz) at
one of the engine mounts (where the engine is connected to the front cradle) and the output dof
(displacement w in direction þz) on the top beam. The shell thickness, mass density and Young’s
modulus have been introduced as uncertain parameters that are modelled as symmetric triangular
membership functions with the range and the core as defined in Table 4. Modal damping
of 1% has been set for all modes. For each deterministic FRF computation, the modes
have been computed in the frequency range [0, 2000]Hz. Modal superposition then yields the
FRF in the range [100, 1100]Hz with an increment of 1Hz. This analysis case has previously been
reported in [14].

9.2. Results with the Transformation Method

For the car front cradle with the n ¼ 3 uncertain parameters in Table 4, the number of interval
levels is set to m ¼ 10, so that the TM again requires NTM ¼ 1þ m � 2n ¼ 81 deterministic
experiments. Eq. (13) has been used to obtain the fuzzy FRF in Fig. 17 from the set of
deterministic FRF vectors.
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Fig. 16. Example 2: a car front cradle, rigidly clamped at the 4 connection points to the car body. The w=F FRF

characteristics are computed between dof ‘‘IN’’ and ‘‘OUT’’ in the figure, both in the þz-direction.

Table 4

Uncertain input parameters of the car front cradle in Fig. 16

Parameter X i (unit) Input range ½Xmin;Xmax� Core value X c

X 1 Young’s modulus ð109 N=m2Þ [190, 210] 200

X 2 Mass density ðkg=m3Þ [7600, 8000] 7800

X 3 Shell thickness ð10�3 mÞ [1.6, 2.4] 2.0
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9.3. Results with the Short Transformation Method

The FRF of the car front cradle has been estimated also with the STM. Again, an initial DOE is
performed on the input vertex and at the core combination, to obtain the initial FRF envelope
A0

gð f Þ in Eq. (14). The thresholdT for the length of the left and right segmentsL and R has been
set to 25. Note that the threshold is a user-defined parameter, that is tuned such that all short line
segments are not included in the characteristic line segments, while the long line segments are
included. The fact that the threshold is higher than in the clamped plate analysis can be understood
from the higher resolution in the frequency band, so that the characteristic line segments are longer.
With the VsumðkÞ, defined in Eq. (18), it has been found that the principal diagonal is spanned by
the parameter pair ½X left;X right� at the indices ðk; 2n þ 1� kÞ ¼ ð2; 7Þ on the TM’s DOE; this
corresponds to columns 2 and 7 of Eq. (6); X left is thus found at ða

ð0Þ
1 ; að0Þ

2 ; bð0Þ
3 Þ and X right at

ðb
ð0Þ
1 ; bð0Þ2 ; að0Þ

3 Þ. The following selection criteria for the principal diagonal have been found:
�
 The maximal value of VsumðkÞ is attained at k ¼ 2: Vsumð2Þ ¼ 94:9%.

�
 The second highest value of VsumðkÞ is attained at k ¼ 1: Vsumð1Þ ¼ 51:2%, clearly less than
Vsumð2Þ.
�
 The opposite combination ð7; 2Þ yields a very low value of Vsumð7Þ ¼ �334:6.
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Fig. 17. Fuzzy FRF of the car front cradle in Fig. 16, obtained with the Transformation Method in the range

100–1100Hz. A darker colour represents a higher level of membership of the fuzzy FRF output.
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For higher levels of membership, only the two parameter combinations on the principal diagonal
have been evaluated, i.e. ða

ðjÞ
1 ; a

ðjÞ
2 ; b

ðjÞ
3 Þ and ðb

ðjÞ
1 ; b

ðjÞ
2 ; a

ðjÞ
3 Þ for j ¼ 2::m, yielding 2 � ðm � 1Þ ¼ 18

additional deterministic experiments; in total, NSTM ¼ 1þ 2n þ 2 � ðm � 1Þ ¼ 27 deterministic
computations are performed by the STM. For the obtained set of deterministic FRF vectors,
Eq. (13) has been used to reconstruct the fuzzy FRF, which is shown in Fig. 18.
In Section 9.5, the results with the STM are given for other diagonal selections

than the principal diagonal. For the purpose of ranking the 4 diagonals after the initial
DOE, note that the third highest value of VsumðkÞ is attained at k ¼ 4 (Vsumð4Þ ¼ 5:89%)
and the fourth highest value at k ¼ 3 (Vsumð3Þ ¼ �57:9%). The principal diagonal at
combination (2; 7) has the highest ranking, followed by the diagonals at combinations (1; 8),
(4; 5) and finally (3; 6).
9.4. Validation and assessment

The FRF data samples ofNMC ¼ 500 Monte Carlo simulations, uniformly distributed over the
input vertex (i.e. the Input range in Table 4), are used to validate the fuzzy FRF of the TM and
the STM, respectively, with the criteria defined in Section 6. The results are given in Table 5. Also
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Fig. 18. Fuzzy FRF of the car front cradle in Fig. 16, obtained with the Short Transformation Method in the range

100–1100Hz. A darker colour represents a higher level of membership of the fuzzy FRF output.
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for the analysis of the car front cradle, the STM is more effective than the TM, as it reduces the
number of experiments with a factor 3, again with only a slight loss of accuracy.
9.5. Justification of the proposed diagonal selection

The car front cradle is a more complex structure than the clamped plate in Section 8. The cradle
has both bending modes and torsion modes that alternate with each other in the evaluated
frequency range; the order of these mixed series is not known in advance, while each series may
have a different dependence on the input parameters. Predicting the combination that yields the
most left and right FRF would require a detailed study of the structure and its mode shapes; this
is considered to be outside the scope of this paper.
In this section, the STM analysis in Sections 9.3 and 9.4 is repeated for other diagonals than the

principal diagonal. The uncertain FRF predictions with the STM are then validated with the
criteria introduced in Section 6. Table 6 compares the ranking according to these validation
criteria with the ranking according to theVsumðkÞ (see Section 9.3). Again, the principal diagonal
produces the best prediction of the fuzzy FRF, with the best validation against Monte Carlo data.
For the other diagonals, there’s a complete agreement between the rankings based onVsumðkÞ and
the validation criteria.
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Table 5

Front cradle: validation of TM and STM envelopes against Monte Carlo data

Transformation Method Short Transformation Method

NTM ¼ 81 experiments NSTM ¼ 27 experiments

OIPTM ¼ 98:8% OIPSTM ¼ 97:5%

V
up
TMðAMCð f Þ;ATMð f ÞÞ ¼ 96:6% V

up
STMðAMCð f Þ;ASTMð f ÞÞ ¼ 96:5%

Vlo
TMðAMCð f Þ;ATMð f ÞÞ ¼ 96:7% Vlo

STMðAMCð f Þ;ASTMð f ÞÞ ¼ 95:8%

Table 6

Comparison of STM predictions of the car front cradle FRF, for all 4 diagonals that can be selected

Selected diagonal,

at combination ð. . . ; . . .Þ
VsumðkÞ

(ranking)

Validation criteria (ranking)

OIP VAF Vup
VAF Vlo

(2, 7), i.e. principal diagonal 94.9% (1) 97.5% (1) 95.8% (1) 96.5% (1)

(1, 8) 51.2% (2) 97.3% (2) 95.0% (2) 96.5% (1)

(4, 5) 5.89% (3) 96.4% (3) 93.9% (3) 96.4% (3)

(3, 6) �57.9% (4) 95.0% (4) 91.9% (4) 96.4% (3)

The results and ranking based on theVsumðkÞ criterion are compared with the results and ranking based on the OIP and

VAF, i.e. the validation criteria of the fuzzy FRF against Monte Carlo data.
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The agreement between the rankings is higher for the car front cradle analysis than
for the clamped plate analysis (compare Table 6 with Table 3). Note that in the car front
cradle analysis, there’s a higher difference between the VsumðkÞ values obtained at the
different diagonals. The clearer distinction in the ranking of the STM results is therefore not
surprising.
10. Conclusions

In the present paper, the Transformation Method (TM) of M. Hanss has been applied to
predict the effect of input uncertainty on the FRF of structures under dynamic loading. The
method designs a set of deterministic experiments to numerically approximate the fuzzy FRF
vector. This allows to solve the bulk part of the structural dynamics analysis with existing Finite
Element routines. The TM results have been validated against FRF data samples from a
sufficiently high number of Monte Carlo simulations in the same input parameter range. For the
considered structures, it has been shown that the TM yields envelopes that are almost, but not
fully conservative: the non-monotonicity of the FRF amplitudes and the TM’s sampling
procedure have the effect that some (anti-)resonance peaks are simply missed, resulting in saw-like
shapes of the global FRF envelopes. As these shapes can easily be recognized, this undesired effect
does not limit the TM’s applicability to assess the effect of input uncertainty, provided that a
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sufficiently high number of interval levels (typically 5 to 10) is set for the TM’s Design of
Experiments. The computational burden of the TM may become too high when a structure has a
large number of uncertain input parameters or when a large computation time is required for a
single deterministic computation. The short transformation method (STM) is presented in this
paper as an attractive alternative to the original TM for frequency domain applications.
Significant reductions in computation time have been achieved.
Starting from the assumption that input uncertainty results in monotonic eigenfrequency

shifts for the dynamic structure under consideration, the STM has been designed as a
two-step procedure. First, the FRF vectors are computed for the input vertex combinations and
the core combination (i.e. the original TM is applied with m ¼ 1 levels of membership),
yielding an initial set of FRF vectors. Starting from the global FRF envelope of this set, a
heuristic procedure is used to find the parameter combination pair on the input vertex
with the largest effect on the global FRF envelope. More specifically, the global FRF envelope is
reduced to two sets of characteristic line segments on the left- and right-hand side of the
global envelope. When a parameter combination on the input vertex has the largest shape
conformity with one side of the global envelope, it can be expected that the opposite
parameter combination has the largest contribution to the other side of the global envelope.
This allows to select the principal diagonal in the parameter hyperspace. For higher levels of
membership (typically 5–10 levels), the STM selects only the 2 parameter combinations along this
principal diagonal for further analysis. As the TM computes a Full Factorial DOE of 2n

experiments for the higher levels of membership, the STM results in a significant reduction of the
computation time. Moreover, the reduction percentage increases exponentially with the number
of input parameters.
For the considered structures, it has been shown that the STM predicts the fuzzy FRF from a

much smaller set of computations, with only a small reduction in accuracy of the validation
criteria against Monte Carlo FRF data. Apparently, the assumption of eigenfrequency
monotonicity is valid for the considered structures. Furthermore, the STM results have been
repeated for other diagonal selections than the principal diagonal. For both structures, selecting
another diagonal than the proposed principal diagonal yielded less accurate predictions of the
uncertain FRF—a justification of the selection procedure of the principal diagonal. Finally, note
that the STM evaluates a subset of the TM’s DOE. One might therefore consider to apply the
STM as a first phase of any uncertainty assessment with the TM; when a higher accuracy is
desired, the TM analysis can be completed by evaluating the remaining parameter combinations
of the TM’s DOE.
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